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Abstract— This paper deals with the quadratic stabilization 

problem of nonlinear systems represented by a decoupled multi-

model. Based on a linearization based-decoupled multi-model 

structure, the state feedback controller which guarantees the 

stability of the closed loop multi-model is designed using a 

common quadratic Lyapunov function CQLF in terms of LMIs 

constraints. To improve the stabilization performances, a 

relaxation of CQLF is presented. The proposed control structure 

is illustrated to the stabilization of Two-Wheeled Inverted 

Pendulum Mobile Robot and the simulation results showed the 

good performances of proposed stabilization approach. 

 

Keywords— decoupled multi-model, state feedback control, 

CQLF, relaxed CQLF, LMIs, Two-Wheeled Inverted Pendulum 

Mobile Robot. 

I. INTRODUCTION 

In the recent years, there is a growing interest to the multi-

model approach for the representation and control of nonlinear 

complex systems. The multi-model approach proved that it is 

a powerful and efficient tool for modelling and control of this 

class of systems thanks to its capability to take into account 

the presence of multiple operating regimes of the system [10]. 

The main idea of the multi-model is the decomposition of the 

nonlinear system behaviour into a finite number of operating 

zones; each is represented by a local linear sub-model. 

Subsequently, the global multi-model output is carried out by 

the aggregation of sub-models. According to the way that the 

sub-models are combined, two well-known multi-models are 

proposed in the literature: coupled states multi-model (or 

Takagi-Sugeno model) and decoupled states multi-model (or 

decoupled multi-model) [4][5][10][11][12]. The coupled 

states multi-model or the conventional Takagi-Sugeno model 

is the most used in the most research works. However, studies 

on decoupled multi-model remains restricted compared to the 

first type of multi-model. In the other hand, finding a suitable 

decomposition technique for the system to obtain a family of 

sub-models is the first step to multi-model design. Several 

techniques are proposed in the literature whose three methods 

namely the convex polytopic transformation method, the 

identification technique and the linearization method, are the 

frequently used. The last one is based on the linearization of 

the nonlinear system around a finite number of operating 

points and then obtained a family of local linear sub-models. 

Forasmuch that the convex polytopic transformation method 

is conventionally used, we chose to use the linearization 

technique in our study. However, the drawback of this 

approach is the determination of the relevant operating points. 

Our idea is to exploit a fuzzy clustering algorithm, like as 

FCM (fuzzy c-means)[13], to find the cluster centers and then 

consider these centers as the desired operating points. Once 

the linearization-based decoupled multi-model is obtained, the 

next step is to design a decoupled static state feedback 

controller which stabilizes the closed-loop system. Sufficient 

stability conditions are presented in terms of Linear Matrix 

Inequalities constraints which guarantee the quadratic stability 

of the decoupled multi-model by using common quadratic 

Lyapunov functions (CQLF). In [2][9], relaxations of stability 

conditions are proposed to improve the stabilization 

performances of the Takagi-Sugeno model that offer more 

reliability and   effectiveness of the stabilizing controller and 

the desired performances. 

In our work, we try to exploit these relaxations to stabilize 

quadratically a highly nonlinear system by a decoupled static 

state feedback control. The paper is organized as follow: In 

section II, the Two Wheeled Inverted Pendulum Mobile Robot 

is presented. Section III is devoted to the decoupled multi-

model design which contains the linearization technique 

principle based on the FCM to determine the operating points, 

as well as the global structure of the decoupled multi-model. 

Decoupled control, basic and relaxed stabilization conditions 

are presented in section IV. In section V, some simulation 

results for the decoupled control of the Two Wheeled mobile 

Robot are given, and finally, concluding remarks are located 

in the last section.  

II. THE TWO WHEELED INVERTED PENDULUM MOBILE ROBOT 

A. Description 

The Two Wheeled Inverted Pendulum Mobile Robot is 

widely used and applied for the validation of various control 

strategies. This intelligent robot is based on the inverted 

pendulum principle. Its mechanical structure and 

characteristics are very complex and it is considered as a 

highly nonlinear complex system. The Two-wheeled inverted 

pendulum robot has just two driving wheels for actuator. 

However, it has three degrees of freedom; two of planar 
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motions and one of tilt-angular motion. In the literature, 

several studies have been carried out for the analysis [17] and 

the stabilization [1] of the two-wheeled inverted pendulum 

robot. Figure 1 shows the principle and the coordinate system 

of the Robot. 

 

 
 

Fig. 1 The Two Wheeled Inverted Pendulum Mobile Robot 

B. Dynamic Model 

Three motion equations could describe the plant dynamics 

[18]: 

   

1 2

3 cos sins c s sm m p m d m d

u u

R

       

 
 
 

                  (1) 

2 2 2 2
22

1
3 sin sin

2
c s sL m m d I m d

R
  

  
      

  
 

1 2( )L u u

R


               (2) 

   2 2
3

1 2

cos sin cos sins sm d p d g m d I

u u

        


   (3) 

Where 1u  and 2u  are the torques applied to the robot 

wheels. 

Let’s consider  , , , , ,
T

p p      as the state vector of the robot. 

Then, a mathematical development leads to the following state 

space representation: 
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Table 1 shows the parameters of the robot. 

TABLE I 

PARAMETERS OF THE PLANT 

Parameter Designations Values 

sm   Mass of the body (kg) 4.315 

cm   Mass of a wheel (kg) 0.503 

2I   
n2- directional rotational inertia 

of the body (kg.m²) 
0.003679 

3I   
n3- directional rotational inertia 

of the body (kg.m²) 
0.02807 

R   Radius of a wheel (m) 0.073 

L   Half-distance between wheels 0.1 

d   
Distance from center to gravity 
center (m). 

0.1 

III. DECOUPLED MULTI-MODEL 

Obtaining a decoupled multiple model structure from a 

nonlinear system has 3 steps: 

 The selection of a technique for the decomposition of the 

nonlinear system operating in local areas. 

 The design of a family of local linear models representing 

the functioning of zones already selected. 
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 The aggregation of sub models using weighting functions 

defining the contribution of each sub-model at any time in 

the system. 

A. Linearization-based multi-model 

The first step for designing a multiple model is to choose a 

decomposition technique of the nonlinear system behaviour. 

In our work, we choose to utilize the Linearization method 

which is described as follow: 

Let’s consider a nonlinear system represented by (5): 

 
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Where , ,n m px u y    represent, respectively the 

state, the input and the output vectors of the plant. 

The Linearization of the system (5), using the Taylor series 

method, around an arbitrary operating point  ,oi oix u  is given 

by: 

( ) ( ) ( )

( ) ( )

i i i

i i i

x t A x t B u t R

y t C x t

  



                        (6) 

With 

 

 

( , ) ( , )
,

,

oi oi

oi oi

i x x i x x
u u u u

i oi oi i oi i oi

f x u f x u
A B

x u

R f x u A x B u

 
 

 
 

 

  

  

The question now posed is how to choose or determine the 

relevant operating points? 

B. FCM based operating points computing: 

As mentioned in section I, our idea is to use a fuzzy clustering 

algorithm, for example the FCM (fuzzy c-means) algorithm 

(see [13] for more details). This algorithm allows 

decomposing the nonlinear system operation into a set of 

operating zones (clusters), and returns the center coordinates 

as well as a fuzzy partition matrix  U  which determines the 

fuzzy membership degree of each cluster (sub-model) in each 

instant. 

In our work, we used the MATLAB Toolbox function defined 

as follow:  

   , , _ , _center U obj fcn fcm data cluster n  

The last step of the decoupled multi-model design is the 

aggregation of the sub-models. A decoupled multi-model 

takes its name from the combination of sub-models in the 

form of a decoupled state structure (see figure 2) [11][12]. 

Based on system (2), a decoupled multi-model based on 

Linearization is given by (7): 
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Where ( )i    is the weighted function of the thi  sub-model, 

defined by (7+8) and  r  is the number of local sub-models. 
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( )t  is called decision variable, which can be the input, the 

output, a state , … of the system. i is the cluster center or the 

operating point and   is the dispersion of the Gaussian 

function (9).  

A multi-model with decoupled states is given by figure 2. 

 

Fig. 2 Linearization-based decoupled multi-model architecture 

IV. DECOUPLED QUADRATIC STABILIZATION BY A STATIC 

STATE FEEDBACK  

In this section, the goal is to establish a decoupled state 

feedback control law which stabilizes quadratically the 

decoupled multi-model and likewise the nonlinear system in 

the closed Loop. 

A. State feedback controller 

For each sub-model, a corresponding local controller given 

by (11), which stabilizes it in closed loop, is designed:  

( ) ( )i iu t F x t                                                                   (11) 

Then, the global control law is obtained by the weighted 

sum of local controller as follow: 

   
1 1
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r r

i i i i

i i

u t t u t t F x t   
 

                    (12) 

The local gain matrix iF  (for i=1,…,r) is determined by 

LMIs techniques such that some stability conditions are 

satisfied. 

B. Quadratic stabilization using CQLF 

In this section, the gain matrix iF  is synthesized based on 

LMIs and using a common quadratic Lyapunov function for 

stability conditions. 
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Theorem IV.1 The decoupled multi-model (7+8) is 

quadratically stabilizable via the state feedback control (11), if 

there exist a common positive definite matrix 0P   and 

matrices
iK , for i=1,…,r, such that the following LMIs 

conditions are satisfied: 
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The mathematical development leads to the following LMIs 

stability conditions: 

The closed Loop decoupled multi-model is quadratically 

stabilizable if there exist a common definite positive matrix 
1 0,X P    and matrix iK  such that: 
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C. Quadratic stabilization using relaxed LMIs conditions 

To further reduce the degree of conservatism of the results 

above, a relaxation LMIs conditions proposed in [2] in the 

following theorem: 

Theorem IV.2 If there exist a symmetric matrix  0P , 

matrices ijQ  and matrices iN ,  1,...,i r  which satisfy: 
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Or also: 
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Then the decoupled multi-model (7) is quadratically 

stabilizable via the decoupled state feedback controller (11). 

And we have     1

i iF N X    

V. SIMULATIONS 

In this section, a decoupled static state feedback control is 

designed to stabilize the Two Wheeled Inverted Pendulum 

Mobile robot described in section II. 

As mentioned previously, the decoupled multi-model is 

designed using the linearization technique and the FCM 

algorithm to compute the centers of clusters which are the 

desired operating points. Five operating points  ,oi oix u  are 

selected. 
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A. Quadratic State feedback control of robot  

Initial conditions: 0 0.5  0    0    0 ;
20 60

x
  
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0.0135    0.0860    0.0371    0.0026   - 0.0000   - 0.0002

0.0860    0.6228    0.2650    0.0205   - 0.0001   - 0.0015

0.0371    0.2650    0.1195    0.0099    0.0000    - 0.0006
 

0.0026    0.0205    0.0099  
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The gain matrices iF  are given by: 

1

-1.9988  -15.1320   -6.5533   -1.6257   20.9986  19.4831

1.5799  12.1369   5.3195   1.4992    -21.0096    -19.4921
F

 
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 

2
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 0.6366  4.6858  2.0631  0.3182  - 0.0278  - 0.0395

 
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4
5

1.2400  9.1262  4.0185  0.6190  -0.0088  -0.0334
10

-1.2401 -9.1270  -4.0189  -0.6191  0.0122  0.0387
F

 
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 

 

Fig 3, 4 and 5 represent, respectively, the quadratic 

stabilization via the decoupled static state feedback control of 

the position, angle   and the angle   outputs of the two 

wheeled robot using CQLF and relaxed CQLF. 
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Fig. 3 Quadratic stabilization of the position output of the robot using 

CQLF compared to RQLF 

 

Fig. 4 Quadratic stabilization of the   output of the robot using CQLF 

compared to RQLF. 

 

Fig. 5 Quadratic stabilization of the   output of the robot using CQLF 

compared to RQLF. 

 

Fig. 6 Evolution of the control laws applied to system. 

 

Through figures 3, 4 and 5, we can see satisfying 

performances of the decoupled state feedback control of the 

system and the improvement obtained by adding the 

relaxation on stability conditions. 

Figure 6 shows the control laws applied to system. We 

observe clearly the good improvement on the control 

performances. 

VI. CONCLUSIONS 

This paper presents a decoupled multi-model designed by 

the Linearization technique and a fuzzy c-means algorithm. A 

decoupled state feedback control is then synthesized for the 

quadratic stabilization of two wheeled inverted pendulum 

mobile robot based on common quadratic Lyapunov function 

and LMI formulations. Then, to improve the stabilization 

performances, a relaxation in the stability conditions is 

presented. The simulation results show a good improvement 

on the stabilization performances and the stabilizing control 

laws. 

REFERENCES 

[1] A. P. Aguiar, A. N. Atassi and A. Pascoal, “Stabilization of a 

Nonholonomic dynamic Wheeled Mobile Robot with parametric 

modeling uncertainty using Lyapunov functions”, Proc. of 
CONTROLO’2000 - 4th Portuguese Conference on Automatic Control, 

Guimares, Portugal, October 2000. 

[2] C.H. Fang, Y.S. Liu, S.W. Kau, L. Hong, and C.H. Lee, “A New LMI-
Based Approach to Relaxed Quadratic Stabilization of T–S Fuzzy 

Control Systems”, IEEE Transactions on Fuzzy Systems, vol. 14, No. 3, 

June 2006. 

[3] G. Feng, “A Survey on Analysis and Design of Model-Based Fuzzy 

Control Systems”, IEEE Transactions on Fuzzy Systems, vol. 14, issue 

5, pp. 676- 697, 2006. 

[4] G. Z. Angelis, “System Analysis, Modelling and Control with 

Polytopic Linear Models”, Technische Universiteit Eindhoven, 2001. 

[5] Chadli M., Maquin, D. Ragot J., “Static Output Feedback for Takagi-
Sugeno Systems: An LMI Approach”, Proceedings of the 10th 

Mediterranean Conference on Control and Automation - MED2002, 

Lisbon, Portugal, July 9-12, 2002. 

[6] Chadli M., Ragot J., Maquin D., “Quadratic stability and stabilisation 

of interval Takagi-Sugeno model: LMI approach”, Proceedings of the 

2005 IEEE International Symposium on Intelligent Control Limassol, 
Cyprus, Page(s): 1035- 1038, June 27-29, 2005.  

PC
Typewriter
55



[7] S.W. Nawawi, M.N Ahmad, J.H.S Osman, “Control of Two-wheels 
Inverted Pendulum Mobile Robot Using Full Order Sliding Mode 

Control”, Proceedings of International Conference on Man-Machine 

Systems 2006, September 15-16, 2006, Langkawi, Malaysia. 

[8] N. M. Abdul Ghani, N. I. Mat Yatim, and N. A. Azmi, “Trajectory 

Tracking Of Two Wheels Mobile Robot Using Sliding Mode Control”, 

Proceedings of the fourth Global Conference on Power Control and 
Optimization, vol. 1337, pp. 135-139, 2–4 December 2010, Sarawak, 

Malaysia. 

[9] Korba P., Babuska R., Verbruggen H. B., and M. Frank P., “Fuzzy 
Gain Scheduling: Controller and Observer Design Based on Lyapunov 

Method and Convex Optimization”, IEEE Transactions on Fuzzy 

Systems, vol. 11, No. 3, June 2003. 

[10] R. Murray-Smith, T. A. Johansen, “Multiple Model Approaches to 

Nonlinear Modelling and Control”, Taylor and Francis, 1997. 

[11] R. Orjuela, D. Maquin and J. Ragot, “Non-Linear System Identification 
Using Uncoupled State Multiple-Model Approach”, Workshop on 

Advanced Control and Diagnosis, ACD'2006, Nancy, France, 2006.  

[12] R. Orjuela, B. Marx, J. Ragot, D. Maquin, “State estimation for non-
linear systems using a decoupled multiple model”, International 

Journal of Modelling, Identification and Control, vol. 4, no. 1, 2008. 

[13] R. Babuska. “Fuzzy Modeling for Control”, Kluwer Academic 
Publishers, Boston, 1998. 

[14] S. Boyd, V. Balakrishnan, E. Feron, and L. El Ghaoui, “Control system 

analysis and synthesis via linear matrix inequalities”, American 
Control Conference, 2:2147-2154, San Francisco, June 1993. 

[15] S. Petterson, B. Lennartson, “An LMI Approach for Stability Analysis 

of Nonlinear Systems”, Proc. of European Control Conference, ECC'97, 
1-4 July 1997, Brussels, Belgium. 

[16] S. H. Jeong and Takayuki Takahashi, “Wheeled Inverted Pendulum 

Type Assistant Robot: Inverted Mobile, Standing, and Sitting Motions”, 
Proceedings of the 2007 IEEE/RSJ International Conference on 

Intelligent Robots and Systems, Page(s): 1932-1937, San Diego, CA, 

USA, Oct 29 - Nov 2, 2007. 

[17] Wang, H.O., Tanaka, K. and Griffin, M.F. “An approach to fuzzy 

control of nonlinear systems: stability and design issues”, IEEE 

Transactions on Fuzzy Systems, vol. 4, issue 1, pages 14-23, Feb 1996. 

[18] Y. KIM, S. H. KIM and Y. K. KWAK, “Dynamic Analysis of a 

Nonholonomic Two-Wheeled Inverted Pendulum Robot”, Journal of 

intelligent and Robotic Systems, vol. 44, pp. 25-46, 2005. 

 

PC
Typewriter
56


